
Quando o número for de 2 algarismos, basta somar esses 2 algarismos e colocar o resultado no meio deles. Por exemplo, vamos efetuar a seguinte multiplicação: 26 x 11.
Temos o número 26, somando seus 2 algarismos temos 2+6=8. Pronto! Agora é só colocar esse 8 no meio deles:
a resposta é 286. Portanto 26 x 11 = 286.
Outros exemplos:
1) 34 x 11
somamos os algarismos do número 34: 3+4=7
colocamos o resultado no meio deles: 374. Portanto 34x11 = 374.
2) 81 x 11
somamos os algarismos do número 81: 8+1=9
colocamos o resultado no meio deles: 891. Portanto 81x11 = 891.
3) 37 x 11
somamos os algarismos do número 37: 3+7=10
Como deu um nº maior que 9, então não podemos colocar todo o número no meio deles. Colocamos apenas o algarismo das unidades (0) no meio deles, e o algarismo da dezena (1) é somado ao primeiro algarismo do número: 407. Portanto 37x11 = 407.
Quando o número for de 3 algarismos, então esse número multiplicado por 11 resultará em um número de 4 algarismos. Por exemplo, vamos efetuar a seguinte multiplicação: 135 x 11.
Temos o número 135. Somando o 1º com o 2º algarismo desse número temos 1+3=4. Somando o 2º com o 3º algarismo desse número temos 3+5=8. Esses 2 resultados serão colocados no meio do número 135, tirando o seu algarismo do meio:
1485. Portanto 135 x 11 = 1485.

Nesse caso basta acrescentar um zero no final do número e subtrair pelo número inicial. Vamos efetuar a seguinte multiplicação: 44 x 9.
Acrescentando um zero no final do número 44 ficamos com 440.
Então subtraímos desse valor o valor inicial: 440-44 = 396.
Portanto 44 x 9 = 396.
Outros exemplos:
27 x 9 = 270-27 = 243.
56 x 9 = 560-56 = 504.
33 x 9 = 330-33 = 297.

Nesse caso basta acrescentar 2 zeros no final do número e subtrair pelo número inicial. Vamos efetuar a seguinte multiplicação: 44 x 99.
Acrescentando 2 zeros no final do número 44 ficamos com 4400.
Então subtraímos desse valor o valor inicial: 4400-44 = 4356.
Portanto 44 x 99 = 4356.
Outros exemplos:
27 x 99 = 2700-27 = 2673
56 x 99 = 5600-56 = 5544
33 x 99 = 3300-33 = 3267

Quando um número de 2 algarismos AB for multiplicado por 101, o resultado será ABAB. Alguns exemplos:
43 x 101 = 4343
32 x 101 = 3232
14 x 101 = 1414

Exemplos de multiplicações que podem ser feitas com esse método: 42x48, 53x57, 21x29, 35x35, 87x83, 94x96, etc.
Devem ser seguidos os seguintes passos:
1) Multiplicamos o algarismo das dezenas (que é igual nos 2 números) pelo número seguinte a ele;
2) Multiplicamos os algarismos das unidades normalmente;
3) Juntamos as duas partes.
Vamos efetuar a seguinte multiplicação: 53 x 57:
Passo 1:
5x6 = 30
Passo 2:
3x7 = 21
Passo 3:
Juntamos os dois números: 3021.
Portanto 53 x 57 = 3021. Barbada!
Outro exemplo: 94 x 96:
Passo 1:
9x10 = 90
Passo 2:
4x6 = 24
Passo 3:
Juntamos os dois números: 9024.
Portanto 94 x 96 = 9024. Barbada!

A soma dos n primeiros números naturais ímpares é igual a n2. Exemplos:
1) Soma dos 5 primeiros números naturais ímpares (1+3+5+7+9):
A soma é igual a 52 = 25.
2) Soma dos 15 primeiros números naturais ímpares:
A soma é igual a 152 = 225.

Some o número com a sua metade, e multiplique o resultado por 10.
Exemplos:
14×15 =(14+7)×10=210
10,4×15=(10,4+5,2)×10=15,6×10=156
![]() Se você tem dificuldades para decorar a tabuada do 9, pode fazer o seguinte: 1) Considere o número anterior ao qual você irá multiplicar o 9. 2) Veja quanto falta para ele chegar ao 9. 3) Junte os dois números encontrados. Por exemplo: 1) 9 x 2 => o número anterior ao dois é o 1. 2) Para o 1 chegar ao 9, faltam 8. 3) Agora basta unir os dois números: 18 Portanto, 9 x 2 = 18. Da mesma forma pode ser feito para os outros números, até chegar em 9x9: 1) 9 x 9 => o número anterior ao nove é o 8. 2) Para o 8 chegar ao 9, falta 1 3) Agora basta unir os dois números: 81 Portanto, 9 x 9 = 81. ![]() Basta multiplicar o número por 2 e "arrastar" a vírgula para a esquerda. Ex: 345 / 5 = 345 * 2 = 690. Arrastando a vírgula, temos 69,0. Ex: 1526 / 5 = 1526 * 2 = 3052. Arrastando a vírgula, temos 305,2. ![]() Some o quadrado anterior com duas vezes com o número do qual você quer descobrir o quadrado, e depois diminua uma unidade. Ex: Se 32=9, quanto vale 42? Aplicando a regra, temos: 9 + 4 + 4 = 17
17 - 1 = 16
Portanto, 42 = 16
Outro exemplo: 52 = ?
16 + 5 + 5 - 1 = 25
![]() Arredonda-se a 2ª parcela para o 1ª múltiplo de 10 inferior a esse número. Posteriormente, acrescenta-se a diferença entre o número original e o número arredondado. Exemplos: 23 + 36 = 23 + 30 + 6 = 53 + 6 = 59 357 + 459 = 357 + 450 + 9 = 807 + 9 = 816 Observação: Quando for conveniente, arredonda-se a 2ª parcela para o 1ª múltiplo de 10 superior a esse número. Posteriormente, subtrai-se a diferença entre o número arredondado e o número original. Exemplo: 357 + 459 = 357 + 460 - 1 = 817 – 1 = 816 ![]() Multiplicam-se as partes sem os zeros finais e acrescenta-se a quantidade de zeros finais. Exemplos: 23 x 10 = (23 x 1)0 = 230 45 x 20 = (45 x 2)0 = 900 15 x 300 = (15 x 3)00 = 4500 30 x 90 = (3 x 9)00 = 2700 |
0 comentários:
Postar um comentário